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Introduction 
 
 We recently reported on a new buckling-based me-
trology for probing the elastic modulus of thin polymer 
films [1].  In this experimental geometry, a thin film of 
interest is transferred to a relatively thick elastic substrate, 
and buckling is induced by compression of the laminate.  
This buckling instability is highly periodic with a wave-
length that is dependent on the mechanical properties of 
both the upper film and substrate as well as the thickness 
of the upper film, as shown in Equation 1. [2, 3] 
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Notation: E is the elastic or Young’s modulus, ν is Pois-
son’s ratio, h is the thickness of the upper film, and d is the 
wavelength of the buckling instability.  Subscripts f and s 
denote the film and substrate, respectively.  Eq. 1 can be 
rearranged to solve for the modulus of the upper film: 
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 We argue that this new metrology is ideally positioned 
as a unique combinatorial and/or high-throughput meas-
urement platform since gradient films can be easily inte-
grated into the experimental design and the measurement 
time is a matter of seconds per data point.  Gradient films 
could be continuous (constant change in parameter A) or 
discrete (step-wise change in parameter A) as a function of 
spatial position in the film, as shown in Figure 1. 
 A crucial concern in this new metrology is the poten-
tial for interactions between neighboring sections along the 
gradient.  The primary example of this would be a sample 
with discrete changes in modulus of the material being 
studied.  The stresses acting on the adjacent specimens 
may interact with each other if they are too close, thus the 
wavelength on the buckled the specimen would deviate 
from a single specimen with same geometric and material 
properties.  In this presentation, a numerical analysis with 
FEA is conducted to investigate such interactions. 
 
 

FEA analysis and discussion 
 
 Finite element analysis (FEA) was employed to con-
duct interaction analysis on the buckling of a film sup-
ported by an elastic media.  A one-dimensional gradient 
was applied on either thickness or Young’s modulus of the 
film.  Both continuous and discrete gradients in the thick-
ness and modulus of the film were analyzed.   
 For the case of continuous gradient, both the deflec-
tion magnitude and wavelength of the buckled film are 
dependent on the spatial position along the gradient.  Fig-
ure 2 shows the schematic of the FEA model with thick-
ness gradient in the film.  Figure 3 illustrates the deformed 
shape of such a specimen.  The FEA simulation suggests 
that the wavelength interaction of a film with a typical 
thickness gradient in our experiments can be ignored be-
cause the gradient is too small (~102 nm/40 mm).  At each 
position, the film can be considered as uniform in thick-
ness since the measurement area is small compared to the 
slope of the gradient (laser spot for light scattering method: 
< 1 mm2).  Although stronger interaction was observed in 
the FEA models having higher thickness gradient as shown 
in the FEA analysis, such steep gradients are rarely feasi-
ble experimentally.  Figure 4 shows the deformed shape of 
a specimen with modulus gradient in the film.  As shown 
in Eq. 1, since the wavelength, d, is proportional to the 
cubic root of the modulus ratio between the film and sub-
strate, thus the measurement is less sensitive to the ratio as 
compared to the thickness of the film.  Furthermore, since 
the critical strain for buckling is the function of modulus 
ratio4, but independent of film thickness, the film starts to 
buckle at the end where critical stress is reached.  Our FEA 
results show that global buckling happens only when the 
modulus gradient is shallow.  Wavelength interaction 
needs to be taken into account only if the gradient is steep. 
 For discrete gradient situation, the stress distribution 
around the corners of the cutting edge was analyzed and a 
guide was proposed for fabricating discrete libraries of a 
combinatorial or high throughput specimen.  Furthermore, 
the interaction of the wavelength between adjacent films 
was also investigated.  Similar as in the observation of the 
combinatorial edge delamination method [4], the cutting 
depth is a critical parameter affecting the stress distribution 
and should be larger than a threshold value.   
 

Conclusions 
 
 In this presentation, we introduced a numerical analy-
sis (FEA) on the interaction between adjacent regions in a 



thin film having a gradient on either thickness or modulus.  
The FEA results suggested that for actual experimental 
specimens, the interaction could be ignored due to very 
small gradient.  For the discrete gradient specimens, the 
gap between each region, the depth of the slots separating 
neighboring regions and film thickness should satisfy an 
equation so that the stress interaction is small enough that 
each region can be treated as a single specimen. 
 
 * Contribution of the National Institute of Standards 
and Technology, not subject to copyright in the United 
States. 
 

References 
 
1. C.M. Stafford, C. Harrison, K. L. Beers, A. 

Karim, E. Amis, M. R. Vanlandingham, H.-C. 
Kim, W. Volksen, R. D. Miller, and E. Simonyi, 
Nature Materials, 2004, 3, pp545-550. 

2. M. A. Biot, J. Appl. Mech., 1937,A4, ppA1-A7. 
3. A. L. Volynskii, S. Bazhenov, O. V. Lebedeva 

and N. F. Bakeev, J. Mater. Sci., 2000, 35, 
pp547–554.  

4 M. Y.M. Chiang, W.-l. Wu, J. He and E. Amis, 
Thin Solid Films, 2003, 437, pp197-203. 

 

Figures 
 

position

pa
ra

m
et

er
 A

position

pa
ra

m
et

er
 A

a b

position

pa
ra

m
et

er
 A

position

pa
ra

m
et

er
 A

position

pa
ra

m
et

er
 A

position

pa
ra

m
et

er
 A

a b

 
Figure 1.  Examples of (a) continuous and (b) discrete gra-
dients in parameter A as a function of spatial position 
along one axis of the film. 
 
 
 

 
 
Figure 2.  Schematic of FEA model of a film possessing a 

gradient in thickness. 
 

 
Figure 3.  Deformed shape of a film possessing a gradient 

in thickness. 
 
 
 

 
Figure 4.  Deformed shape of a specimen with film pos-

sessing a gradient in modulus.  The modulus at 
left end is larger than at the right end. 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 236
	02: 237


